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Quantum-computing ideas are applied to the practical and ubiquitous problem of fluid dynamics simulation.
Hence, this paper addresses two separate areas of physics: quantum mechanics and fluid dynamics (or specifi-
cally, the computational simulation of fluid dyhamics). The quantum algorithm is called a quantum lattice gas.
An analytical treatment of the microscopic quantum lattice-gas system is carried out to predict its behavior at
the mesoscopic scale. At the mesoscopic scale, a lattice Boltzmann equation with a nonlocal collision term that
depends on the entire system wave fimction, governs the dynamical system. Numerical results obtained from
an exact simulation of a one-dimensional quantum lattice model are included to illustrate the formalism. A
symbolic mathematical method is used to implement the quantum mechanical model on a conventional work-
station. The numerical simulation indicates that classical viscous damping is not present in the one-dimensional
quantum lattice-gas system.
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I. INTRODUCTION sented. The simulation method uses symbolic mathematics to
A. Overview implement a quantum mechanical system in the second

quantized representation. A glob lly phase-coherent wave
The purpose of this paper is to show that a phase-coherent function is simulated on a classical computer. This is pos-

quantum computer can be used to simulate the behavior of a sible because the number of spatial sites of the lattice is
system of massive quantum particles, propagating and col- small and the number of qubits per site is few. The main
liding on a discrete space-time lattice. This discrete quantum finding from the simulation is tha it is possible for mass-
particle system is called a quantum lattice gas. I have used density waves to oscillate indefini ely. The simulation con-
principles and concepts from quantum mechanics instead of firms that there is no viscous dam ing in the hydrodynamic
from classical mechanics to formulate "local rules" for an sound mode of the artificial fluid.
artificial microscopic particle dynamics. In a quantum lattice
gas, this is possible because a network of two-energy-level B. Backgroumd
quantum systems is used to encode the configuration of par-
ticle occupancies throughout the lattice. Other types of quantum lattice ases have been studied,

There are two parts to this paper. First, I analyze a glo- beginning in the mid 1990s, by Bia ynicki-Birula [1], Succi

bally phase-coherent and entangled quantum lattice-gas sys- [2,3], Meyer [4,5], and Boghosian nd Taylor [6] to model

tern governed by the many-body Schridinger equation of the relativistic Dirac equation and tle nonrelativisitic Schr6i-

quantum mechanics.' The many-body Schr6dinger equation dinger equation. In contrast, the ma oscopic scale behavior

is reformulated as a Boltzmann equation of kinetic transport. of the quantum lattice gas I here is classical, even

Assuming the quantum computer's wave function does not though the microscopic scale dynami s is quantum mechani-

decohere by uncontrolled entanglement with the external cal rather than classical in nature. , .he quantum lattice gas

world, the main analytical result of this paper is the deriva- reduces to a classical lattice gas onlyl if the collision process

tion of a lattice Boltzmann equation that exactly describes causes a particular incoming config ation of particles to
kinetic transport at the mesoscopic scale in the quantum lat- scatter into only one single "outgoin "configuration. 2

tice gas. That is, the lattice-Boltzmann equation is an exact In two previous papers on lattice gases [7,8], I
representation of the particle dynamics, including all effects considered a quantum spin system w ere the system wave

due to quantum superposition and entanglement. This refor- function was collapsed into a tensor product state over the

mulation of many-body quantum mechanics represents a spins (or qubits) after each collision step. This allows for

quantum computing application geared towards the direct local entanglement to occur tempora ly and avoids global

simulation of physical dynamical models. A hydrodynamic entanglement altogether when the particles propagate

fluid simulation is considered here as a test case. through the lattice [7]. Allowing for only short-range and

Second, numerical data taken from an exact simulation of short-time entanglement of qubits, thd quantum lattice-gas

a globally phase-coherent quantum lattice-gas system is pre- system is described at the mesoscopic scale by a lattice
Boltzmann equation, with a local co lision operator that
obeys the principle of detailed balance (8] (we may refer to

*Email address: Jeffrey.Yepez@hanscom.af.mil; URL:http:// this model as afactorized quantum latt e gas). It provides a

xyz.plh.afmil
iThe quantum state of the quantum lattice gas is said to be glo-

bally entangled when qubits in the system are entangled with other 2This follows since it is a direct generalizatiln of a classical lattice
qubits in the system positioned arbitrarily far away in the lattice. gas with quantum bits replacing classical bits\
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way to implement the lattice Boltzmann equation in an un- II. ANALYTICAL TREATMENT
conditionally stable manner on a classical computer. Al-
though quantum mechanical ideas inspired the formulation
of the collision process, in the end, the factorized quantum In quantum computing [9,10], a two-level quantum bit
lattice gas is a probabilistic classical process. The salient (called a qubit) represents the smallest unit of information
feature of the factorized quantum lattice-gas formulation is that may be in a superposition of the discrete states 10) and
that it is suited for implementation on an array of small quan- I 1). A qubit Iq) =a1O)+,8I1) has an amplitude a of being
turn computers, interconnected by a classical communication in the zero state, 10), and another amplitude 63 of being in the
network. Therefore, the previous papers do not address the one state, I1). The complex coefficients are constrained by
situation where quantum superposition and entanglement can I al 2 + +1/812 1 so that the probability of the qubit being in
spread throughout the entire quantum computer. This situa- the zero state plus the probability of it being in the one state
tion is treated here. is unity. For any unitary quantum computation, one can de-

scribe the algorithm by specifying a unitary evolution opera-

C. Organization tion, in our case formally written as eHir/'If, acting on the

In See. II, I introduce the quantum lattice-gas formulation system wave function, It(t)), which constitutes the state of

from an analytical perspective. The quantum lattice gas is the quantum computer's "memory." With N qubits, the

treated at the microscopic and mesoscopic scales in Secs. quantum state IT(t)) resides in a large Hilbert space with 2 N

II A and II B, respectively. When the quantum computer is dimensions. A new quantum state 1I41(t + -)) is generated by
fully coherent throughout the entire course of the simulation, application of a unitary operator (which could be represented

the collision operator is nonlocal. Evaluating it requires by a unitary matrix of size 2NX 2 N) for a short duration 7 as
knowledge of the entire system wave function on the quan- [4(t+ •)) (2.1)
tum computer. An exact representation of the quantum lattice
gas' mesoscopic behavior is developed in See. II B. Its me-
soscopic behavior is governed by a lattice-Boltzmann equa-
tion. By repeated application of eH , an ordered sequence of

The quantum lattice-gas formalism is presented from a states is generated and each one is given a unique time label.
numerical perspective in Sec. III. The numerical methodol- If the first state is labeled by t then the next one is labeled by
ogy used in the simulation of the quantum system is pre- t + T, and the next by t + 2 , and so forth. In this way, think
sented in Sec. III A. The numerical method discussed in Sec. of the computational time advancing incrementally in unit
III A I is based on a representation of a universal quantum steps of duration T. Of course the state of the quantum corn-
gate expressed in terms of the creation and annihilation op- puter exists at all intermediate times, say at t+ 7/2, but for
erators. The symbolic rules used to carry out the exact simu- our purposes we need to consider only the state at intervals
lation is described in Sec. III A 2. A simple one-dimensional of the time step 7. Formally, the quantum computer's evolu-
lattice-gas model, used in this paper for test purposes, is tion is invertible by application of the adjoint of the evolu-
described in Sec. III B. I have included various computer tion operator
simulations with both classical and quantum mechanical mi-
croscopic dynamics. The classical and quantum mechanical
versions of this simple one-dimensional lattice-gas model,
called the 1D3Px model, are described in Secs. III B 1 and 141 (t- 7))=e- W71,(t)). (2.2)
III B 2, respectively. Simulation results are presented in Sec.
III C. The classical and quantum mechanical simulations re-
suits are presented in Secs. III C 1 and III C 2, respectively. This computational picture is consistent with the Heisenberg
The classical simulations, provided for comparison purposes, picture of quantum mechanics. For any reversible algorithm
are done at the microscopic scale and also in a classical chosen, the task is to map the algorithm onto the dynamical
mesoscopic mean-field approximation. Then, I present an ex- evolution of interacting qubits within the physical device,
act simulation of the quantum ID3Px model, with three qu- which can be driven by external control.
bits per site for small systems, Approximation schemes are
needed to compute the many-body dynamics on a classical . Preliminaries
computer, except in the case of very small system size or
systems with very few particles. An exact quantum simula- Consider a quantum computer with' qubits arranged in a
tion of a small cluster, comprising 21 qubits, is carried out on lattice-based array with the following properties:
a conventional workstation using a symbolic mathematics (1) V is the number of lattice sites. ,
technique that is described in Sec. III A. The numerical (2) B is the number of qubits per site (and the number of
simulation gives us a way to understand the quantum lattice- nearest neighbors).
gas method in concrete terms and is a necessary step toward (3) N= VB is the total number of qubits.
achieving numerical simulations on quantum computers. (4) 2N is the size of the full Hilbert space.

A brief summary of the results and a few closing remarks (5) 2 B is the size of the on-site submanifold, denoted B
are given in Sec. IV. (and the number of on-site configurations).
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TABLE I. Ket symbols. I

Symbol Size of manifold Description {q..qj)

1,) 2 v Total system ket X IqI)®""". ® 1qA). (2.4)
[ I 2B On-site ketfq) 2 Qubit, local state ket Here the summation indices qa are either zero or one, for
1q___2__________local__state____ _I__ _ ý 1la<sN. Each tensor product Iql)®' "-®0qN) is a basis

state and 1I1) is a pure classical state. The number represen-

At each site of the lattice resides a group of qubits acted tation (2.4) is used in the numerical quantum simulation pre-

upon by a sequence of quantum gates [10-13], whose action sented in Sec. Ill C. I would like to establish a convention

is mediated by external control. The quantum lattice gas' for representing the system ket as a linear combination of

evolution can be formally expressed as a special case of Eq. tensor product states that are lattice-site specific. Let I I)
(2.1) where eiHf'=- as follows: denote an on-site ket formed over the qubits at a single site

of the lattice

}'f(xl,.....xCv;t+r))=• '(;•i,.....v;t)). (2.3)

In Eq. (2.3), 9 is the streaming operator, which in matrix t {q1 .•'"qB}

representation is an orthogonal permutation matrix with X[ql(x,t))®. . .®fqB(x,t)). (2.5)

components being either 0 or 1. 9 is the "classical" lattice-
gas streaming operator. However, in Eq. (2.3), e is not a The system wave function (2.4) can in general also be ex-
classical operator. It is a unitary collision operator. In gen- pressed as a linear combination of tensor product states over

eral, when expressed in matrix form, C has complex compo- all the on-site kets
nents. (The quantum lattice gas reduces to a deterministic

classical lattice gas if C is a permutation matrix with 0 or I IW(x1 .. .. A(0 1 , .. ,)

components. If and when C is stochastically switched be- .01.....
tween different permutation matrices during the dynamical x101)0... 01 v), (2.6)
evolution, then the quantum lattice gas reduces to a probabi-
listic classical lattice gas.) Finally, in Eq. (2.3), 1 have ex-plicitly labeled the wave function's dependence on all the where the shorthand notation I '/')----'ift(xn ,t)) is used. Here
coordinates of the lattice to emphasize that the wave function the indices qkn (for I -_ n </ V) in the sum represent the num-
is a lattice-based field quantity. bered basis states in the on-site manifold B.. So they are in

is ca causce-base m n o. the range 0a< t,,i <22 B-I . The coefficients A account for all
In general, the operator 6 can cause mixing of outgoing the global superpositions between lattice sites.

collisional configurations at each site of the lattice, locally
entangling the qubit states within a lattice cell of size /. The 3. Unitary collision matrix

operator 9 then causes particles to move from one site to the
next, by exchanging qubit states between nearest neighbor- Collisions are implemented independently at each site of

ing sites. Although the application of S causes the particles the lattice. Hence, all sites can be collided in parallel, homo-

to move just as they would in the streaming phase of a clas- geneously across the entire system. The collision operator C
sical lattice gas, it also causes global superposition and en- is therefore expressible in tensor product form since local

tanglement of all the qubit states, if local entanglement has quantum superposition of outgoing on-site configurations oc-

already been caused by C. In this way, quantum entangle- curs only within each 2B-dimensional submanifold S. The

ments are spread throughout the lattice by the action ofS. 2NX2N collision matrix can be written as the following

I will use the following convention for indices. tensor product:

(1) Small roman letters (a,b,c) for the momentum direc- v
tions on the lattice, a E {0, . . . B- I }. C?= ® U, (2.7)

(2) Greek letters (a,,fl,y) for specifying qubits, a x=1
e{0,.. .,N-l}.

(3) Middle roman letters (iJ,k) for the spatial dimen- where the on-site collision matrix 0 is a 2BX2B unitary
sions, i E {1, .... D}. matrix. It. acts on the on-site ket

2. System wave function l•'(xt))= Oj ¢(,t)). (2.8)

Let I*q), I tp), and Iq) denote the total system ket, on-site
ket, and qubit ket, repectively, as shown in Table I. The The prime on the left-hand side (LHS) of Eq. (2.8) indicates
quantum computer's total wave function can in general be that the ket is an outgoing collisional state. Using the repre-
expressed as a linear combination of tensor product states sentation (2.6) of the system ket, the postcollision system ket
over all the qubits is
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'x .... ,xv;t)) = (X ..... t) f(t)fa(;,t)ýTre(t)n1]. (2.11)

A ,A( . v.... (J C) In the literature on classical lattice gases and the lattice-
= .- :,v Boltzmann equation, fa(x,t) is referred to as the single-

particle distribution function, and it is defined at the mesos-
x Ii) ®" ® UI ?V) copic scale. For classical lattice gases, numerical estimates of

fa(x,t) are obtained either by ensemble averaging over many
= ' (A'(A,' ... , ¢•') independent microscopic systems or by coarse-grain averag-

ing over space-time blocks with a single microscopic system.

x@'i)o... ,). (2.9) For the quantum lattice gas, the fa(x,t) is the expectation
value of the operator nj determined by repeated measure-

An equivalence class is defined as a set of basis states that ment of single microscopic realizations or by direct measure-
correspond to particle configurations with the same mass and ment of an ensemble, as occurs in nuclear magnetic reso-
momentum (and energy if that is also defined in the lattice- nance quantum computers [14,15]. So the definition (2.11)

gas model). The on-site unitary collision operator C1 acting also defines fa(x,t) at the mesoscopic scale.
on the B-submanifold itself is block diagonal over the Let ao denote the first local state within the group of
equivalence classes. Consider, for example, the quantum local states at position x of the Bravais lattice. In addition, let
1D3Px lattice gas (see Sec. III B 1 for a detailed description ao correspond to the displacement vector ;0. Next, suppose
of the 1D3Px lattice-gas model). There are two conserved the local states are numbered in a systematic and well-
quantities for this one-dimensional system: the mass and the ordered fashion so that each local state a= ao+a, for all
momentum along the x axis. Hence, there is only one equiva- a E {0,1,... ,B- 1 }, resides at position x. Note that with this
lence class and it has two members, a two-body head-on numbering scheme, the directional index a, associated with
configuration and a configuration with a single rest particle, the ath local state, is found by the modulus operation a
Both configurations have m = 2 and/p= 0. The equivalence =(a mod B). Then, the local mass density and the momen-
class is comprised of the following on-site kets: tum density at ; and t can be expressed in terms of the

13) = 1011), occupancy probabilityfa(;,t) following the convention used
to define the mass and momentum densities in a classical

14) = I100). lattice gas

B a)+B

A general outgoing ket in this mass-momentum sector of the p(i;,t)"= lim 2 mfa(;,t)= lim 2 m Tr[Q(t),iJ,
on-site submanifold is a linear combination of these two, -0 a=1 /--o0 a=ao

(2.12)
aj,011) +8 1100), (2.10)

B

where a and 6 are complex numbers. So the collision matrix p(x,t)vi(G,t)= lim Y, mc2eafa(xt)
0 for this one-dimensional quantum lattice gas has one -0 a

block. It has a 2 X 2 block for mixing the head-on and rest ao+B

particle configurations. In general, & is block diagonal over = lim . mc e(.modB)iTr[e(t)nt].

the equivalence classes [7]. Each block of 0, associated with /0O

an equivalence class of size n, is a member of the U(n) (2.13)
unitary group. The mass and momentum densities are considered "macro-

scopic" field quantities. They are only well defined in the
B. Mesoscopic scale continuum limit, where the primitive cell size of the lattice

1. Occupancy probability and the mass and momentum densities approaches zero. However, for practical considerations, they
are approximated by high resolution grids with small but

The probability of occupancy at time t of the ath local finite cell size.
state is denoted f•(t). Let the ath local state be associated To experimently determine the mass density or momen-

with a displacement vector ea at position x. Also, let ii tum density at a site x at time t in an actual quantum system,
denote the number operator for the ath local state. That is, it is necessary to know the probability of occupancy of all

n,•J*(t)) has eigenvalue I or 0 corresponding to the ath the local states at that site fa(;,t) for a= 1,. . . B, according
local state being occupied or empty at time t. A fundamental to the definitions (2.12) and (2,13). The probability of occu-
construct of the quantum lattice-gas formalism is that the pancy fi(n,t) of each local state depends on the polarization
probability of occupancy fa(t) is expressed in terms of the
quantum mechanical density matrix e(t)= I(t))(4IJ(t)I as of the corresponding qubit Iqa(;,t))= a(;,t)10)

the following trace: +/3(x,t)I 1). A Von Neuman measurement of the state of
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TABLE II. Two neighboring qubits. (P(t)[ct~gt[p(t+ t

Qubits 1q) jq') (2.15)

Local state a C' which is done by multiplying through from the left by

Position x x'=;~e (qT(t)jtn, gt, and then using the identity = 1. From the

Momentum a identity (2.14), we know that nS=t, Using this fact
Mpmcea Pin the above equation allows us to write it as

this qubit will yield a value of either 0 or 1, with probability t t ' ))=((t)jct, CIjP(t)).

I aa(-;, t) I2 or I,6a.(, t) 12, respectively, since the measurement (2.16)

causes a collapse of the quantum wave function. A single The "bra" vector on the LHS of this equation can be sim-
value obtained by this stochastic measurement process is not plified using the adjoint of Eq. (2.3), which is (P(t+ T)I

sufficient to determine fa(x, t). Therefore, to obtain an esti- =(T(t) I 6tt, so that we obtain the following result:
mate of the expected equilibrium values of the mass and
momentum densities, it is necessary to either ensemble aver- (*(t+ r)n, ,I(t+ i-))=('(t)l~tna~IP(t)).
age over many realizations of the microscopic system or (2.17)
coarse-grain average over space-time blocks within a single
microscopic realization. In this regard, the amount of effort Using Eq. (2.11) and referring to Table II, Eq. (2.17) ex-
needed to obtain estimates of the densities is identical for the presses the probability of occupancy of local state a' at site
quantum system and classical lattice-gas sysytems. A quan- x+ /,ea at time t + T in terms of a matrix element evaluated
turn computer that provides a direct means for measuring the at the neighboring site ; and at the earlier time t. That is,
expected state of a qubit (such as is possible with an NMR
quantum computer) would be a more natural choice for fa(t±/sea,t+ )=(P(t)tCtn P(t)). (2.18)
implementing this quantum lattice-gas algorithm.

If measurements were made at each and every site, and at We may add fa(x,t) - (T(t)Inaij (t)), which vanishes by
every time step of the dynamics, then the quantum lattice-gas definition, to the right-hand side (RHS) of Eq. (2.18). Then,
system is effectively "factorized" in such a way that the we recognize Eq. (2.18) is a transport equation for the par-
quantum computer's wave function is always collapsed into tidle occupancies. The result is a lattice-Boltzmann equation
a tensor product state. This type of factorized quantum for the quantum lattice-gas system
lattice-gas simulation, with continual and homogeneous mea-
surement of the qubits, results in a probabilistic classical fa( . )e+,a ,t+T)=fa(x,t) + 0--o(T), (2.19)
lattice-gas simulation [8]. Yet, even in this case, the value of
the transport coefficients can differ from those of the classi- where the collision term is expressed as the following matrix
cal lattice gas. element:

2. Mesoscopie transport equation 11neso(T)--(T(t)I•tna(>--aIP(t)). (2.20)

Let us consider two qubits I q) and Iq'), which are located An alternative derivation of Eq. (2.20), carried out in the
at neighboring sites x and x' =;+ /;,, respectively. I shall continuum limit, is given in Appendix A. In practice, we will
refer to the local states encoded by these two neighboring not be able to analytically evaluate Eq. (2.20) for a large
qubits by their numerical labels a and a', respectively, quantum lattice-gas system with global entanglement be-
Next, suppose these local states may be occupied by particles cause of the exponential size of the IT) ket. However, it is

with momentum mcea. Following this construction, the ac- possible to formally express the collision term flr"eso when
tion of the streaming operator S causes a particle to move [I) is represented as the linear combination (2.6). This is

from site ; to the neighboring site ;', hopping from local done as follows:

state a with momentum p= M ca to local state a' with the

same momentum p' --p. This labeling convention is summa- u .....
rized in Table II. With this understanding, we can write the {. ..... v'} {0 .. o}

identity. XA(' 1, .... ,fv)(i'1®""

(*lI;,i[jP=(Q~tjtniS,]f). (2.14) , . . (2.21)

This is a simple mathematical way of stating the following: Moreover, it is possible to express fl` in terms of the
If you make a measurement of the occupancy of local state a
before streaming, the result you get must be the same as
when you make a measurement of a' after streaming. 2 B X 2 B matrix. That is, ia acts only in the submanifold B on

The first step toward deriving a microscopic transport the qubits at a single site. We write the N-qubit number
equation for the quantum lattice gas is to rewrite Eq. (2.3) as operator ',, as a V-fold tensor product that has a single
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B-qubit number operator na located at the nth site index Then using Eq. (2.22), the lattice-Boltzmann equation for the
corresponding to the position vector ;.1 as quantum lattice-gas system becomes a local equation that

can be easily simulated on a classical computer [7,8].

S=1®l ®- . 0 ...® a ®01, (2.22) 3. The approach to steady-state equilibrium

where 1 denotes the 2 B X 2 B identity matrix. The collision The system is said to be in steady-state equilibrium
operator Ctra'- a' can then be written as (which may also be called thermodynamic equilibrium) when

the system ket 1f1'q(t)) is an eigenvector, with unity eigen-

1®1®1... O(Ota,,O-•a)® • •®1=e x= (2.23 value, of the collision operator 6,
(2 .2 3 ) ( . 0CIpeq) -Ieq). (2.30)

where
The value of the probability of occupancy (2.11) is then de-

fa_ Ott(Ji-,i, x=xn (2.24) termined from Jjkeq) as
a 1, otherwise. (22(;),t)=(4,eq(t)!;.jq q(t)). (2.31)

Using Eqs. (2.7), (2.22), and the orthonormality of the Notice by the definition (2.30) for steady-state equilibrium,
on-site kets (•f,,,Ib,) e,, , Eq. (2.21) reduces to a local the collision term (2.20) in the lattice-Boltzmann equation
matrix element evaluated at single site x, =xh=x as vanishes,

mfleso(jpeq)) = 0. (2.32)

Therefore, at steady-state equilibrium, the occupancy prob-
XA*(4Ir, ... .,-i,•fn, ,'n+i .... b,) abilities are unchanging over time. That is, jieq) is the

ground state of the system. The distribution along the mo-
xA(4.. .... mentum directions of the particle occupancies are uniform,

(2.25) so the local configurations are perfectly symmetric, and
fl"es° cannot cause any further changes.

Let us make the following definition:

HI. NUMERICAL TREATMENT

( bA. Methodology

x.A*(,, i 1. Universal two-qubit gate

In this section, I write a two-qubit universal gate in terms
XA(N11, .... ,, ... , -40). (2.26) of the creation and annihilation operators of the second quan-

tized formulation of quantum mechanics. A classic text on
The quantity 7"(4bn , ,Oj) represents the superposition of the second quantization is by Fetter and Walecka [16]. For our
on-site basis states at site i with all the other on-site basis purposes, the two-qubit gate is a member of the special uni-
states in the system at the other sites. With this definition, tary group SU(2); I neglect the overall phase factor because
Eq. (2.25) can be written in a simpler way, this does not affect the quantum lattice-gas dynamics. If (J is

a member of SU(2), it can be parametrized using three real
[1meso=• • ( ,)(iktiOi...-.uiIb) numbers 6, •?, and 0 as follows:

(2.27) C ( e'fcos0 -e'ýsin 0

U -'_ e _'•sin 0 - e-'ýcos 0] (3.1)
If each on-site state is not entangled or superposed with any
other on-site state, then R can be written in factorized form,
7Z(O,,, , p) = C(4p,)C(4,). In this case, Eq. (2.27) is simpli- Let at and aa denote the creation and annihilation operators
fled, for ath spin of a fermionic quantum spin system. Then the

spin-! creation and annihilation operators satisfy the anti-
U n U-n ,(2.28) commutation relations

where the coefficients C(ij) specify any local superposition {8a ,} = , (3.2)
and entanglement

O)-- E c(0,0)l4n). (2.29)
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The spin number operator •- has eigenvalues of 1 and where X is a symbol used to denote what I call the null state

0 in the number representation when acting on a pure state, that accommodates Pauli exclusion and destruction on the
correspondirig to the ith spin being up s,= I and down vacuum. That is, the symbols at and a represent the single-

sz = - ½, respectively, spin (or single qubit) creation and annihilation operators, re-
Consider a fermionic spin system with a total of N spins spectively.

whose system ket is denoted by 1,P). Acting on this system Next, all the basis states, in the number representation, are
ket with a unitary operator, we would like to entangle the encoded by the symbol T[s], where 0 s-s_<2 N- 1, for a

two spin states, the states of the ath and fth spins, according system with N spins. That is, the states are binary encoded
to the components of the special unitary matrix (3.1). Let and labeled by N-bit integers. The state %P[0] is called the

Y,, denote a square 2NX×2 N matrix that does this. I define vacuum state. The symbolic rules embodying the multiple-

Y,p in terms of the multispin creation and annihilation op- spin creation and annihilation operators are defined in terms

erators as follows: of the single-spin rules

Sal-1+e-i~sinO9t4a+e'sinO~taa-(l+e'cocsO)na a( 1)Sat[(sA2t)a]i

-(1 -e-'6cos 0)ý,-2i sin ýcos 0ýn&# (3.3) (3.12)

for a# fi. Its matrix representation for a two-qubit system is ( - a[(sA2')=a]

a[a,1[s]]= ( ( if •,
0 eicos 0 i (3.12 an0 (3.13 (3.13)

-e'=in(3.4) q.(.3

0 -e-"sin 0 -e-'cos 0 0 where 0• aoN-1 and where the factor (-1)S, appearing
0 0 0 - 1 in Eqs. (3.12) and (3.13) accounts for a phase change of ir

radians induced by commuting spins. In the number
In Appendix B, I demonstrate why Yc,, is manifestly unitary representation each basis state is denoted by a ket
and an appropriate formulation of a universal quantum gate. Inin2 ." .n... nN), where each n is either I (particle

In the special case when 0= ir/2, •= 0, and = 0, then present) or 0 (no particle present). The phase factor S,, is
Y,,# reduces an interchange operator defined by

X -1+n(3.5) S^n^+n 2 + " +n- 1 . (3.14)

which is a NOT gate (see Appendix B). The bitwise AND operation is denoted here by the symbol A.
The symbol * denotes a bitwise barrel roll to the right. That

2. Symbolic mathematics method is, "s=']" means shift the integer s to the right byj digits.

It is possible to simulate the exact quantum mechanical Hence, the result of the operation "(sA2')=*a" is either 1
evolution of a quantum spin system using computational or 0, depending on whether or not a particle occupies the ath
symbolic mathematics. 3 To test the quantum lattice-gas local state. Notice that the symbols at and a are overloaded,
method, I implemented the algorithm using version 4 of so that when they are used with a single argument, that ar-
MATHEMATICA [17]. Letting I and 0 represent spin up and gument is interpreted as a spin value. If at and a are used
spin down, respectively, the first step is to define a set of with two arguments, the first argument is interpreted as a
rules that encode the Fermionic anticommutation relations spin-index and the second argument is interpreted as a ket.
(3.2) Notice that these symbolic definitions of the multiple-spin

creation and annihilation operators use the basis-state symbol
at[0]= 1, (3.6) '1 on the LHS of the rules, but T is not used at all on the

RHS in the definition of the rules. Hence, it may seem that
at [ I] =, (3.7) the use of the symbol 4r is superfluous here. However, this is

not the case, because its use allows me to define the action of
at[X]=X, (3.8) the creation and annihilation operators on a superposition of

basis states in a recursive fashion:
a[0]=N, (3.9)

at[a,AP[s] +B]=A at[at,'I[s]]+ at[a,B], (3.15)
a[l]=0, (3.10)

(3.11) a[a,A[s]+B]=A a[a,I[s]]+a[a,B]. (3.16)

Using this convention, it is possible, for example, to destroy
a spin in local state a of a superposed state, say qI[si]

3I developed this symbolic method in 1991 at Brandeis Univer- +P[s 2], by directly supplying this state as the second argu-
sity, see http://xyz.plh.af.nil/Papers/pdf/ae9l.pdf ment. Then, Eq. (3.13) correctly expands out to
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a[a,'P[s1 ] + It[s2]= a[a,xtI[s ]]+ a[a,q'12[]]. The lattice-gas collision operator according to Eq. (2.7)
(3.17) for the V= 7/ system is thus defined as a sevenfold compo-

sition
If the special symbol I were not used, then one would get
the wrong answer, C[P]= U[20,21,19,U[17,18,16,U[14,15,13,U[I 1,12,10,

a[a,s, +s 2]=a[a,s3], (3.18) X U[ 8,9,7,U[5,6,4,U[2,3,1,T]]]]]]]. (3.22)
Ocourse, it is This is actually handled recursively in the symbolic imple-

wher 53is he nmercalsumof s an ~2 Ofmentation, so C works regardless of the size of the system.
possible to use a special symbol in place of the plus sign to
represent superimposed states. I have chosen not to do this. The streaming operator for the quantum lattice gas is
With the '' symbol convention, MATHEMATICA can by de- implemented using two rules, one to stream the right moving

WiththeT smbolconenton, ATHm~nA ca byde- particles, denoted S+ , and the other to stream the left mov-fault manipulate expressions involving the superposition of ing particles, denoted Sa Note that the right moving par-
an arbitrary number of states and represent them in memory tiles occupy local states 2,5,8,11,14,17,20 and the left mov-
in a compact fashion. After the action of the collision opera- ticles occupy local states 3,6,9,12,7,20 andtor (which is mathematically defined earlier in this paper and ing particles occupy local states 3,6,9,12,15,18,21. S+ and
symbol(whichismathetically defined i telb el) on tos pasperped S_ are defined in terms of a sevenfold composition of inter-symbolically defined immediately below) on to a superposed chneorars(.)
state, the resulting new state in general has identical basis change operators (3.5):
states that are repeated in the superposition, where each oc- S+[4] =X[2,5,X[5,8,X[8,1 ,X[I 1,14 ,X[1 4 ,17 ,
currence has a different amplitude. Using the W symbol con-
vention, all these types of replications are automatically re- XX[ 17,20,T]]]]]], (3.23)
duced down to the one term, since MATHEMATnCA
automatically adds coefficients of common terms. S_4[P]==x[21,18,X[ l8,l5,X[l5,l 2 ,X[1 2 ,9,X[9,6,

Next, the multiple-spin number operator is defined as a
composition of the multiple-spin creation and annihilation X[6,3,,]]]]]]. (3.24)
rules Again, these are handled recursively in the symbolic imple-

](3.19) mentation, so the streaming operators work regardless of the
size of the system. A global shift of particles is done by

With rules (3.12), (3.13), and (3.19), for the creation, a - successive local interchanges of particles occupancies [18].
hilation, and number operators, it is then straightforward to Finally, the evolution rule, denoted E, for the entire quan-

implement the universal gate, Eq. (3.3), by composition: tum system is the composition of the last three rules

U[s1 ,s 2 ,'] =q- Cat[s2 ,a[si ,P]]-Bai[si ,a[s2 ,P]] E[T]=C[S+[S_[P]]]. (3.25)

+ (A- I )n[sl0 ,q ]+ (D-I )n[s 2 ,4'] Any other compound rules that may be needed in a simula-
tion can be defined in a similar fashion by composing pre-

- (A +D)n[s1 ,n[s2 ,W]], (3.20) defined simpler rules. Therefore, beginning with a superposi-
ton of basis states F(t)= I,, ObP[s] the dynamical evolution

where the c numbers A, B, C, and D are components of an equation corresponding to Eq. (2.3) is
SU(2) matrix (A B).

In the case of the quantum 1D3Px model, the collision (1)(t+ 7)=E[4)(t)], (3.26)
operator mixes the on-site kets, 1011) and 1100). Threequbiator arxes a thed 1usie amodfed rul) t and1100). Three where the result is a new superposition over a different set ofqubits are affected. I use a modified rule to directly handle bsssae
this situation. The on-site collision operator for the ID3Px basis states q(t+ 2-)= ak¢,[s'].
quantum lattice gas is implemented by the following compo- B. The 1D3Px model
sition of universal gates:

1. Classical version
Let us consider a simple lattice-gas model as a concrete

-Bat[sia ,at[slb ,a[s2 ,P1]]] example, called the 1D3Px lattice-gas model, in this paper.
This model was first studied by Qian in 1990 [19] and is

-(I-A)n[sla,n[sibT,]] referred to as Model I in his thesis. The lattice gas is one
-(1 -D)n[s 2 ,4] dimensional and has three bits per site, a rest particle with

mass two and speed ± 1 particles with mass one. The mass
+(I -D)n[sia.,n[S2 ,P]] and momentum at a lattice site is
+(-D)ns2,n[sb, m=2no+nl+n2 and p=n-n 2 . (3.27)

-(A-D)n[s5a,nf[Slb,n[s 2 ,P]]]. There are two local configurations both with m=2 and px

(3.21) =0: (1) {n 0 ,n1 ,n 2}={1,0,0} and (2) {n 0 ,n1 ,n2 }={0,1,l1}.
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m=2 head-on rest na(+/ea,t+,r) nja•,t) +la(n,). (3.31)
- 0 0-- 0

For the 1D3Px model, the lattice vectors are e=o=, elx
FIG. 1. Head-on collision in the 1D3Px lattice-gas model. The and mod the llice t ors ar e sg

single equivalence class has m = 2 and p. = 0. nt 2  - and the collision term is specified by the single
function

These two configurations are members of the only collision fl=njn2(1 -n 0 )-n 0 (1 -n1 )(1 -n 2), (3.32)
set (which is called an equivalence class). An equivalence
class has two or more members. Figure 1 illustrates the where.fo=fl andl~l= -fl. Then explicitly for the 1D3Px
equivalence class of the 1D3Px model. Its two elements are model, the microscopic transport equation (3.31) is
the configuration of two head-on particles { 011} and the con-
figuration with a single rest particle { 100.} no(x,t+7-)=n0 (x,t)+f1(x,t), (3.33)

Because the total number of particles and the total mo-
mentum must be conserved, the collision part of the dynam- nij(x±/,t+T)=ni,2(x,t) - (x,t).
ics can only permute the local configurations. The collision A lattice-Boltzmann equation describes the dynamics of the
equation, which is applied homogeneously across the lattice, 1D3Px lattice-gas system at the mesoscopic scale. The me-
can be expressed as in terms of a mapping function U as soscopic average of the occupation variable fl(;,t) is thefollows:soopcaeaeoth ocuainvraln(ft)ste

probability of occupancy

3' = U(s), (3.28) f.(;,t)=(n.(;,t)). (3.34)

where U maps 2B configurations to 21 new configurations. Here, the angle brackets around a microscopic quantity de-

For the simple ID3Px lattice, U is note its mesoscopic expectation value obtained by ensemble

U({01 1})={100}, averaging. The kinetic transport equations are

U({100})={O }11. fo(xt+ 1r) =fo(x,t) + (f1(x,t)), (3.35)

f l,(x +--,t + •)= f l2(X,t)-( n(x,t) ).
If a configuration s is not a member of an equivalence class,
then U(s)= s. In other words, if the incoming state is not a To carry out a classical lattice-gas simulation at the mesos-
member of an equivalence class, then the outgoing state is copic scale, we can approximate lW"(x,t)---(fl(x,t)) by a
set equal to the incoming state. To speed up a lattice-gas mean-field collision term, denoted 'mfl(x't), that neglect
simulation, the mapping function U may be precomputed particle-particle correlations:
before the simulation and accessed in lookup table fashion
during the simulation. ((x,t))='Mf(x,t)=ff2( -f-fl -f)(1 -f2).

In a computer implementation, it is convenient to use two (3.36)
arrays to simultaneously store the states s and s'. Therefore, A statement of detailed balance can be written by setting the
in Eq. (3.28), data in the array that stores the "incoming" mean-field value of the collision term (3.36) to zero at equi-
state s is transformed by the action of the lookup table U librium
(which is applied homogeneously over the entire array) and
the output is written into the next array to store the new ( I- 1'(f.)=0. (3.37)
"outgoing" state s'.

It is conventional to write the collision rule in terms of the Therefore, the probability of occupancies satisfies the equa-
occupation variables na = 1 or 0, which are Boolean values. tion
The collision rule, expressed for an individual local state, is
written Ief

0 pq -feq)(l I (3.38)1 fq= fq2 + (1 - )(1 -2) (.8

nf,(x,t) = n,(x,t)+f(n.), (3.29)
This equation, along with equations for the mass and mo-

where the collision term 1j(n.)=-+l or 0. Writing mentum densities
fla(n*) with an asterisk subscript on n, denotes that the
collision term for the ath local state depends on all the on- po=2f] +Jqj +fq2 and ux0o=f1qf-'2, (3.39)
site local states. It is conventional to write the streaming rule
in terms of na also, gives us a nonlinear system of three equations in five un-

knowns fPP, f~l, J •q and u,0. Hence, it is possible to
naGx+/ea ,t± ") =n,(x,t). (3.30) analytically solve for the occupation probabilities j'q, Ipq

and fJq in terms of po and uxo. When the system is at rest
Combining Eqs. (3.29) and (3.30), the microscopic transport at equilibrium, p, = 0, then 2 =J•2=d and the probability
equation is therefore of occupancy for the rest particle state is
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dE2 3

2' (3.40) 2
1 -2d+2d 2  I

Using Eq. (3.36), the Jacobian of the collision Jab 0

---0T'/dfblfN is -
S-2

-l+2d-2d2  (1 -d)d (I -d)d -3 0
I_ _ _____d 0 1 2 3 4 5 6

1-2d+2d2  1-2d+2d2  Wave Number k (2rJG)

J= 1-2d+2d 2  (d- l)d (d- 1)d enlarged view
1-2d+2d2  1-2d+2d2  0.1d e

l-2d+2d
2  (d- l)d (d- 1)d

1-2d+2d2  1-2d+2d2  
a 0

0-0.5

The eigenvectors of J are 0 0.2 0.4 0.6 0.8 1.

1)=(,1,1, (342)Wave Number k (2~r/#)j1 )= (2,1,1), (3.42)

FIG. 2. The real part of the dispersion relation for the mesos-
j2) = (0,1,- 1), (3.43) copic ID3Px lattice gas in the long wavelength limit and mean-field

limit at a reduced background density of d= 0.214 286.

S(1 d ,1,1) . (3.44) This is a cubic equation in e', and it is analytically solvable.
(1 - The only hydrodynamic mode is a damped sound wave

The eigenvectors 11) and 12), corresponding to mass and &)(k)= _c k+iF(p)k2. Real and imaginary parts of the dis-
momentum, span a two-dimensional hydrodynamic sub- persion relations for the 1D3Px lattice-gas model are shown,
space. The remaining eigenvector 13) is a kinetic eigenvec- respectively in Fig. 2 and Fig. 3. The real part of the disper-
tor, which in this case is density dependent. The eigenvalues sion relations indicates a sound mode [Re(wo)- +±csk as k
of J are --+0]. The imaginary part of the dispersion relation for the

hydrodynamic mode is parabolic for small wave numbers,
X,=0, (3.45) indicating viscous damping of the sound mode [Im(tw)

- k2 as k-0]. The sound damping constant r approaches
X2 =0, (3.46) zero as the background mass density approaches zero [19].

That is, low-mass density waves can oscillate without vis-
1-2d+6d2 -8d 3 +4d4  cous damping.

- I +2d--2d2  The real part of the dispersion relation for the sound mode

for the 1D3Px lattice-gas model set with a background den-

Now using the lattice vectors eo=0, =1, and ;2 sity of d=6/4V, with V=7/, is shown in Fig. 2. The real

= -1, and the expression for J given in Eq. (3.41), we set part of the dispersion relation indicates a sound mode
the secular determinant of the linearized Boltzmann equation [Re(w)---±_c.k as k-*0 where c.=0.74//i". The data
equal to zero points, plotted as black circles, are solutions to the linearized

Boltzmann equation in the mean-field limit. The curves with
[(ei((.,ek+ •)- 1)Sab-Jab]=O. (3.48) slope of ±-c, are numerical linear fits to the data. The imagi-

nary part of the dispersion relation for the-sound mode for
This allows us to solve for the dispersion relations for the
lattice-gas system obeying what is called generalized hydro- .

dynamics. Equation (3.48) is a result from the generalized 1.5
hydrodynamics of classical lattice-gas systems previously 1.25

worked out by Das, Bussemaker, and Ernst [20] and Grosfils, I.
Boon, Brito, and Ernst [21]. Taking /= 7=1, we get the 0.75

following dispersion relation: 0.25 5

(I -2d+2d2 )e3 " -2[d-3d'+ 4d -2d 4  1 2 3 4 5 6

+(1 -3d+3d 2)cosk]e2( (3.49) Wave Number k (23t1e
FIG. 3. The imaginary part of the dispersion relation for the

+(1-2d)2 [ +2d(d- 1)cosk]ew+4d2(d-1)20. mesoscopic lD3Px lattice gas in the long wavelength limit and
(3.50) mean-field limit at a reduced background density of d= 0.214 286.
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Single Lattice Site

One-Dimensional Lattice Network - LDmensions

a - 0 -- ..... - o ..... - 0--o - - -O.0,> FIG. 4. A one-dimensional array of quantum
jI 0,1), I•C2)> I~t3)' 1q.%4), I, ,CI| I%010 computers with three qubits per node.
Q,1•1 1% 2> 1q, 3 > 1q, a >' 1%s) 1 %M> 1•2<L1)> 1>

the 1D3Px lattice-gas model is shown in Fig. 3. The imagi- 0001#2

nary part of the dispersion relation indicates sound damping
[Im((o)-iFk 2 as k-40 where F=0.08/ 2/r. The parabola 00/31a2

is a numerical fit to the data in the region of small k< 1. The /30alfO 2
calculations shown in Figs. 2 and 3 were done with a mass a 0oa Ia 2 + bao0 13f3 2

density filling fraction of do = 6/4 V= 0.214, where a small
system size of V=71 is used. In this case, k=21n/V caofl/fl2 +da0off32

= 0.898. ao/31 oa2

a0 1 0P2
2. Quantum version

a 0 aj a 2

A hypothetical lattice-based quantum computer (with
computational sites depicted as circles) arranged as a one- 1 0 0 0 0 0 0 0 830,831,82
dimensional lattice is shown in Fig. 4. At each lattice site 0 1 0 0 0 0 0 0 3000 1 a 2
resides B=3 qubits in ID in this example with V=7/ sites. 0 0 1 0 0 0 0 0 POa 1 ,82
The on-site ket 10b) resides in a 2B-dimensional submanifold.
The large circle on the right represents an expanded view of 0 0 0 a b 0 0 0 f0a 1ja 2
this on-site submanifold, which is denoted by B. The basis 0 0 0 c d 0 0 0 ao/31fi 2
states of B are shown in the number representation. Each site
is coupled to its nearest neighboring sites by a mechanism 0 0 0 0 0 1 0 0 ao.31 a 2
allowing for the exchange of qubits. If the exchange mecha- 0 0 0 0 0 0 1 0 aoa1 132
nism retains all quantum entanglement (and thereby spread-
ing it through the quantum computer), then the quantum 0 0 0 0 0 0 0 1 ata~a 2
computer is considered fully coherent. If the exchange (3.52)
mechanism is classical (destroying quantum entanglement by
collapsing the wave function), then it is called a type 11 quan- where the local collision operator is the 8 X 8 matrix with
turn computer (which is simply a large array of small quan- one 2 X 2 block, which is a member of the U(2) unitary
tum computers interconnected by a classical communication group satisfying
network).

The associated ID3Px quantum lattice-gas model has lal2+lbl 2=lcl2+ldl 2=l, (3.53)
three qubits per site, fqa)=a.10)+fial1) for a=0,l,2. The
zeroth qubit represents a rest particle of mass two and the ac*+bd*=a*c+b*d=O, (3.54)
first and second qubits represent moving particles of speeds Ia+IC12=l1 2+d1 2=1,
± 1, translating in the right and left going directions, respec- la lb Id (3.55)
tively.

The m=2, px=O equivalence class is spanned by the ab*+cd*=a*b+c*d=O. (3.56)
states 1100) and 1011). Collisional entanglement occurs only
between these two states, ý1100)+XIO01), where ý and X The quantum ID3Px lattice gas obeys detailed balance
are c numbers. The on-site ket, li)= lqo)® I q1) ® [q2), is because the collision operator & is a unitary matrix [8].

The mass and momentum densities for the quantum

10) = i600i1,0 2111 1) +13of a2 Ill10) +f0ai32 l 101) lattice-gas system are

+,80oaC'21100) + eo/31 3 2[011) + ao/f1a21010) p=2(qoljflqo)+(q, Iilqi)+ (q 2Afi~q2), (3.57)

+ aoa1 /3 21001) + ao0aa 2IOO0). (3.51) u.=(qlj Jlql)-(q2 nlq 2). (3.58)

Viscous dissipation does not necessarily occur in quantum
The outgoing on-site ket I = U[ V/) is lattice-gas systems. Global entanglement of the wave func-
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0.4
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S0

0 50 100 150 200 250
TiMe (T)

FIG. 5. Damping of a mass density wave for a system with V-7 sites in the classical lD3Px model simulated using a mesoscopic
Boltzmann equation with the collision term expressed in the mean-field approximation. The background density is dc = 6/4V= 0.214. The
ordinate is the absolute value of the amplitude of the mass-density wave divided by the peak amplitude of the initial perturbation.

tion significantly complicates the dispersion relations, which C. Simulations

are determined by the following equation: 1. Classical simulation

A time history of the mass density wave for a small sys-
tem with V= 7/ sites is shown in Fig. 5. The exponential

D4 (edea' I) 1ab envelope is analytically determined by an analysis of the
linearized lattice-Boltzmann equation in the mean-field limit

1p (see Fig. 3). The predicted sound damping constant r

u"0, =0.08/21, is in excellent agreement with the simulationof 1 data.
(3.59) Plotted in Fig. 6 are damping time constants of mass den-

sity waves in the classical ID3Px lattice gas for different
system sizes from V=21 up to V=2561. The log-log plot

where 1eq is the steady-state equilibrium wave funtion, shows the power-law behavior, known as diffusive ordering,
which is the ground state of the system. I have explicitly typical of a lattice-gas system in the viscous regime. The
written the collision operator, as in Eq. (2.23), in spatially power law in this case is T=0.44V2, which is parabolic.
separated form. In general, as described in Sec. II B 1, a Each circle is determined from a mesoscopic scale simula-
= ao + a, where ao is an index that refers to the first local tion that was initialized with a sinusoidal perturbation of

state at some particular site in the system. According to the 8 p= 0.04m/l from a uniform background mass density at
ordered numbering scheme used, ao=0 at the first site of half-filling, p=2m//. The damping constant r=/2/T is de-

the system, ao=B at the second site, ato=2B at the next termined from the envelope of the resulting standing wave

site, and so on. Without loss of generality, in Eq. (3.59) we e cos wt (see Fig. 5). The mean-field estimates of the

can assume we are working at the first site of the system damping time constant are the circles. The line is a linear
where t = ,®-10 ... 0 1. In the classical case, C is a per- best fit to these estimates. The estimated damping constant
mutation matrix and the steady-state equilibrium wave iuane- deviates only slightly from power-law behavior at the small-
mutation msatnsrix andu the steady-state equi m west system sizes. This is an example of "fluidlike" behavior
tion is a tensor product over the on-site kets; occurring in systems far below the continuum limit. The in-

set plot is a linear plot of the data for V,- 16 and the parabola
V is the same diffusive-ordering power-law in the larger log-

jpeq) ® 1 Oeq). (3.60) log plot.
x=1

2. Quantum simulation

In turn, the on-site kets are formed by a tensor product over I have tested the quantum lattice-gas formalism described
the individual qubits in this paper by carrying out exact numerical simulations of

B10000
B

IO) ® (1x/1.10)). 4l(3.61)o
Wa, 3.61 r.' 1000

Q0 100

Finally,J2=d andfqodl/[d
2 +(l -d) 2] according to Eq. 1 0o

(3.40). The Jacobian of the collision matrix element appear-
ing in Eq. (3.59) is computable using Eqs. (3.60) and (3.61) 1 2 5 10 20 50 100 200
[see Eq. (3.41) in See. III B 1]. In the quantum mechanical Wumber of Sites (1)
case, T'eq) is not expressible as a tensor product state, and
hence the Jacobian of the collision matrix element appearing FIG. 6. Diffusive ordering in the classical lD3Px model com-
in Eq. (3.59) becomes complicated. puting at the mesoscopic scale using the mean-field approximation.
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.14 
1.2-

50000 
Desired

") 25000 50.-. 
Maximal10,1o 1 2 3 4 5 6 7

5 10 15 20 25 10

mass (m) Site (3)
14?) A? •FIG. 8. Initial mass density sinusoidal perturbation in the quan-

FIG. 7. Mass and momentum sectors of the ID3Px lattice-gas tumr 1D3Px lattice gas for a small system size of V= 7/ with peri-
model with V= 7/ sites plotted versus the number of states per odic boundary conditions. The total number of qubits in the simu-sector. lation is BV=21. The simulation is initialized with a sinusoidal

perturbation in the m = 6, p,= 0 mass-momentum sector with aa 1D3Px model, which is described in detail in Sec. III B 1. peak amplitude of &p=0.4 from a uniform background mass den-In this section, I present results obtained from the numerical sity at po= 2 0.857. So the fractional mass density variation issimulation of a small system with V= 7/ sites. I have used initially one part in two, which is an extremely large-scale fluctua-the symbolic numerical technique described above in Sed. tion. The wavelength equals the system size. The initial mass den-III A 2. The principal finding is that the quantum lattice gas sity field is not exactly sinusoidal, because aside from the limitationdoe A 2.dTheprinispla finding, isthof only V= 7/ sites, it is produced by the interference of all 5376does not display viscous damping. in the m = 6 and p,= 0 sector. An algorithm using Lagrangian mul-Since the evolution operator conserves mass and momen- tipliers maximizes the entropy of the resulting wave function andturn, we can divide the Hilbert space into disjoint mass- chooses all the amplitudes of the initial state.
momentum sectors. When the lattice-gas evolution operator
maps a particular state residing in a mass-momentum sector
to a new state, the new state must also reside in that same However, it is computationally advantageous to limit themass-momentum sector. The Hilbert space for the V= 7/ simulation to a single sector of the Hilbert space, so thatsystem has over two million dimensions. The number of memory allocation in the computer is kept at a manageablestates within each mass-momentum sector of the V=7/ sys- level. Figure 8 shows a maximized entropy state used in thetem are graphically illustrated in Fig. 7. The density plot on test simulation presented in this section.the left side of Fig. 7 clearly shows that the allowable mass- The data from the simulation run is presented in severalmomentum sectors are all contained within a hexagonal ways. First, the peak amplitude of the mass density wave isboundary. The distribution for the number of available states recorded after every time step. The amplitude is normalizedwithin a mass-momentum sector is reflection symmetric in such a fashion that at time t=0 it has unity value. In aabout half-filling (m = 14) and about zero momentum (p, viscous fluid with sound damping, the peak amplitude would=0). oscillate and decay exponentially in time by the factor,I have simulated the V=7/ system (with BV=21 glo- e-rt//I cos(2rciW//), where c., is the sound speed and r is abally entangled qubits) in the mass m = 6 and momentum positive definite damping constant as is shown in Fig. 5.

p.,=O sector. In this mass-momentum sector, there are 5376 However, for the quantum lD3Px model, the numerical re-basis states. The goal of the numerical test was to measure sult indicates I may be zero for certain collision operators.the sound damping constant in the quantum 1D3Px model A time series history of the square of the peak amplitudeand compare the result to the mean-field estimate. The sys- is plotted in Fig. 9, using the same format as Fig. 5 for thetem was initialized with a sinusoidal perturbation of the mass classical 1D3Px model with the same grid size and initialdensity field, with a wavelength equaling the grid size of the condition. In the quantum simulation, the peak amplitudeperiodic system (X = V). All the states in the m = 6, px = 0 does not decay in time, unlike the results obtained in thesector were superposed by choosing amplitudes in such a classical lattice-Boltzmann simulations shown in Fig. 5. Ini-fashion that the entropy of the initial state is maximized, tially, within the first couple of dozen time steps, the peaksubject to the independent constraints of conservation of amplitude appears to decay, very much like it does in a clas-probability, mass, and momentum. The entropy function was sical microscopic simulation or lattice-Boltzmann simulationtaken to be of the 1D3Px model. However, the amplitude does not con-
tinue to damp in subsequent time steps. The peak amplitude

S=-- [IcI 2lnfcj12+(I -Ic.1 2)ln(1 -Ic.1 2)], rises and falls. No damping is observed even after a thousanda time steps. An expanded view of the first 250 time steps is
(3.62) shown underneath. Since the algorithm is unitary (and hencethe collisions obey the principle of detailed balance) the dy-where ca is the amplitude of the ket Ia) in the m = 6, p, namics is reversible.= 0 mass-momentum sector. Given a particular desired pro- In Fig, 10, these data are presented in scatter plot fashion,file of the mass density field, it is more difficult to construct where the square of the normalized peak amplitude is plottedan initial state that completely resides in only one sector than versus its first order time derivative. I used the followingto use an initial state that spans the entire Hilbert space. difference formula to approximate the time derivative:
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0 50 aco iso 200 250 FIG. 11. Time history of the mass density at site x--6/ for a
Tine (I:)

system with V= 7/ sites plotted versus time. A discrete Fourier
FIG. 9. Oscillations of a mass density wave in the quantum transform of this time series data is taken to give p*(x)p,•(x). A

ID3Px lattice gas for a system size of V= 7/' in the m =6 and px peak in the power spectrum Ip.12 occurs at about 0.72/fr, which is
= 0 sector. The ordinate is the absolute value of the amplitude of close to the expected sound speed. The abscissa is converted into
the mass-density wave divided by the peak amplitude of the initial unit of velocity, c= 17r, to show that there is a unique sound speed.
perturbation. The ordinate has units of (m//X r)2.

pp2(x,t) p2(x,t- r) - p2(x,t+ r) the time series collected by measuring the fluctuation of the
--- . (3.63) mass density field of the V= 7/ quantum 1D3Px lattice-gas

dt 2T- system. The signal, which is p(6/,t), is measured at site x
= 6/. Plotted below is the power spectrum of the Fourier

The data appear randomly scattered, but is clustered along a transform of the signal, which is Ipd12, versus sound speed
"cone" corresponding to the speed of sound in the lD3Px (this is proportional to the oscillation frequeny, c.=/f). A
model, which the Boltzmann analysis of Sec. III B 1 predicts peak in the power spectrum occurs just below the mean-field
to be c., = 0.74//r. approximation of sound speed, c, = 0.74// ', which is plotted

To obtain a more accurate estimate of the sound speed in as the vertical bar. (See Fig. 2 for the mean-field value esti-
the quantum ID3Px simulation, a Fourier transform of the mate of c,.)
time series history of the mass density at a single site of the
system was computed and the power spectrum p*(x)p,(x) IV. CONCLUSION

plotted (see the bottom plot of Fig. 11). The top plot shows
The main results of this paper are as follows.

® 0.4 The quantum mechanical wave equation is recast as a
b); lattice-Boltzmann equation describing a quantum lattice-gas

u 0.2 , system.
• ;- .. The continuity and Navier-Stokes equations constitute a
., .macroscopic effective field theory for the quantum lattice-0 -gas system and quantum entanglement changes the value of

""."the transport coefficients.
0.2 9A symbolic math method was presented for simulating

dynamical quantum systems.
S-0.4 __ -__",,With reversible microscopic-scale dynamics, a feature of

0 0.2 0.4 0. 6 0.8 1 classical lattices is that dissipation occurs at the macroscopic
Normalized Peak scale. However, viscous damping is not observed in simula-

tions of the quantum 1D3Px lattice-gas model, which is also
FIG. 10. Normalized peak (absolute value of the amplitude of microscopically reversible.

the mass-density wave divided by the peak amplitude of the initial The sound speed of mass density waves is the same as the
perturbation) versus the first derivative of the normalized peak of classical value.
oscillations of a mass density wave in the quantum ID3Px lattice Given the memory and speed constraints of classical com-
gas for a system size of V= 7/ in the m = 6 and p,=0 sector. We Given the ory and se cnt raint oas ca m-
have plotted maximum speed curves corresponding the individual puters, today only small quantum lattice gas can be exactly
particle velocity, c= ±-/-r. As expected, all the data are contained simulated. I have performed many test simulations of the
within this "cone." In addition, we have plotted sound-speed quantum ID3Px model for system sizes ranging from V
curves corresponding to c= +_ 0.74/fr, which is analytically deter- =3/ up to V=7/ and have included results from the V
mined from a mean-field approximation of the system using the = 7/ quantum simulation in the paper, since this was the
linearized lattice-Boltzmann equation. Most of the data is clustered largest computer run.
around the sound-speed curves, and additional data points scattered I do not wish to argue that results obtained for such a
within the "sound-speed cone" indicates randomness in the oscil- small system, with V= 7/ sites, can give us too much in-
lation of the mass density wave. sight about the true macroscopic behavior of the quantum
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lattice gas, which is only well defined in the continuum limit, the ath local state located at position x given by Eq. (2.11) is
Further testing is required on larger systems and in two and the following matrix element:
three dimensions and will be presented in a subsequent pa-
per. Yet, in the classical version of the model, hydrodynami- ft~~'tI~q().(l
dlike behavior is observed in very small systems (see Figs. 5
and 6). The type of behavior found in the small V= 7/ quan- I assume f(;,p,t) is a continuous and differentiable mesos-
tum lattice-gas system may also occur for larger systems. So, copic field quantity. For the moment, suppose the a is the
quantum lattice gases of multiple grid sizes should be simu- local state of an "incoming" particle, preceding a possible
lated. To this end, a compiled version of quantum lattice-gas collision event. I still want to imagine the particle dynamics
code is being developed in FORTRAN 90 and will be run on divided into mutually exclusive events (collision followed by
available supercomputers. streaming) repeated in stepwise fashion ad infinitum. Next,

The issue of the similarity or distinction between particle- the probability of finding a particle in the local state a',
particle correlations (as occurs in classical lattice gases) and corresponding to momentum ýr' at position x=
quantum entanglement (as occurs in quantum lattice gases)
has not been addressed in this paper. Yet, this is an issue that + (T'rm)p', is expressed by the matrix element
can be studied using quantum lattice-gas simulations. f(;+ ('r1M)j',',t± 7-)-=(P(t+T)j 1 f1(+))

(A2)
ACKNOWLEDGMENTS

Suppose a' is the local state of the "outgoing" particle.
I would like to thank Bruce Boghosian for many helpful Then, a basic definition of the total time derivative of

discussions about classical and quantum lattice gases, in par- fxpt stefloigrto
ticular, his suggestion to use a maximal entropy state as the fxpt stefloigrto
initial state of the quantum lattice-gas simulation. This al-dfx,) f+(rm ' t-f $t) A)
lowed me to constrain the quantum dynamics to a single l t =im- M
mass-momentum sector of the full Hilbert space, and thereby dt r.-
speed up the symbolic computation. In the lattice-gas and
lattice-Boltzmann literature, differential notation is applied or, in terms of the matrix elements, it is
to lattice-based mesoscopic fields with the understanding thatdf2,)
the system is being analyzed in the continuum limit. This is ________)

usually not clearly explained, and may cause some confu- dt
sion. I would like to acknowledge Hugh Pendleton for sug-
gesting not to indiscriminately use differential point-form *(i'+ )n fPt+7)-P)IIt)

ntowhndescribing the lattice-gas system at the mesos- TT 7
copic space-time scale, since the mesoscopic-scale superlat-
tice is discrete after either coarse-grain or ensemble averag- (A4)
ing. This is the seed of a Boltzmann equation for particle trans-

APPEDIXA: ERIATIO OFTHEQUATUMport and the RHS of this equation constitutes the collision
LAPPENIXE-A: DERIATINSPOFT TEQUA NTUM term, although this may not appear quite obvious at this point

INATTIE.CSNTRANSPOR EQUATO in the development. In the following development, I shall
IN TE COTINUM LMITinterpret the collision term and rewrite it so that it explicitly

In this appendix, I would like to rederive the transport depends only on n,, at position ; and jI *(t)). In so doing, we
equation (2.19) for the quantum lattice-gas system. The deri- shall see how the collision dynamics is inherently encoded in
vation given here is carried out in the continuum limit (imag- this expression.
ine a space-time lattice with infinite resolution as the cell First, we add zero to the RHS of the above equation to
size vanishes). All the usual restrictions arising from the dis- write the collision term in two parts, explicitly separating the
cretization of the microscopic quantities are temporarily re- total change into "temporal-change" and "spatial-change"
moved. A particle can exist at any point in space and time, parts, as follows:
and it can also have any momentum p =m v. The only as-
sumption I make here is that I can still decompose the space df(;,p, t)
time into an ordered set of local states, which in this case is dt
infinite but denumerable. That is, I imagine there are an in-
finite number of local states at each point in space (B = -c), =li (9( t+ jltI(+r)(I~)n,1~

one corresponding to every possible particle momentum. T-T
Since the number of points in the space is also infinite (V
= cc), the total number of local states are doubly infinite
(N=BVcc2 '). Nevertheless, I assume the local states are+ i
well ordered and denumerable.r-

The probability of finding a particle with momentum p in (M5)
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From the time-displacement operation, e a/atf(x,p,t) This result is expected, since in quantum mechanics, the par-=fGx,,t+ r), we see that the first term on the RHS of the tial time derivative of an operator is found by calculating theabove equation is a partial derivative with respect to time commutator of that operator with the Hamiltonian. Using thisresult, the Boltzmann equation (A5) becomes

af(X+( rm)p,p,t) + O(Sh 2 ) df(xpt) iat --OS2 fx•t (*'(t)V[.,, ,1]1(t))
dt h

•0 + lira () --- - () . ( 1I
T-•0 T

(A6)

The Stouhal number, Sh, is defined as the ratio of the mean- Now the RHS no longer depends on 14I(t+ 7)) (so it is local
free time to the characteristic length scale (Sh= r/t). Simi- in time), but it is still nonlocal in space because it depends on
larly, from the space-displacement operation, e Vf(x,p,t) n•, as well. That is, if the RHS of the above equation werelarl , f om he pac -di pla emen op ratone v(; , ,t) to depend only on ý,, then it w ould have "strictly local"
=f(;+ r7,j,t), we see that the second term is a partial de- todtr
rivative with respect to position form.

Third, using the fact that el"T"--9,, we can rewrite theS1 -. commutator as
.V f(x,p,t) + (j. V)lf(;,plt) + O(Kn')comtora

(A7) =lim il il (A12)

The Knudsen number, Kn, is defined as the ratio of the
mean-free path to the characteristic length scale (Kn Now, and are related by the similarity transformation
=f/L). Therefore, we have the convective derivative Nowa a so the simutarity to(2.14), n, =Stn,S,,, so the commutator reduces to

df(;,p,t) af(;+(Tm/p),p,t) +-t)

dt at n,,]=lim (A13)
7-•0 Tr1

2 Inserting this into Eq. (Al 1) gives the final local form of the

(A8) quantum Boltzmann equation for ftGý,p,t), which is

composed of a local term and a nonlocal advection term. In
the local term, it is technically correct (albeit unconven- df(1 U, t) 1
tional) to explicitly write the partial time derivative's depen- dt 7-(o A
dence on r, even though 7-0. This is done to stress an
equivalence with the matrix element formulation given by Notice that the collision term depends only on the wave
Eq. (A5). function evaluated at time t and the occupancy of the ath

Second, we rewrite the "local change" term. Since local state located at position x. However, if there exists
IT(t+'))=eiH /IfilI(t)) and eiHI/A= 1 + iIlk/h + 0(72 ), quantum superposition between particles at different points
we have in space, then 14I(t)) cannot be written in separable tensor

product form over the spatial points. So in this case, the
(WI'(t±+ ),iIiqI(t+ 'r)) collision term is "nonlocal." Hence, when I say the lattice-

I T Boltzmann equation is local in form, I mean this in a pseudo-
=(Q'(t)VW 1 j,"I'(t))+ (P(t)I[n,• ,!p][P(t)) classical sense, barring nonlocal quantum entanglements:

And this is why I said in the introduction of this paper that
+ 0(72). (A9) the lattice-Boltzmann equation, which accounts for global

entanglement through the collision process, is an exact refor-
Using this equation in conjuction with Eq. (A6), we have mulation of the many-body Schridinger equation,

There is one more point to make in this appendix. From
. + Ti~pt the basic definition (A3) for the total time rate of change of

h t A,/ (t)). (A10) ftp,t), we see that Eq. (A14) can be written as the follow-
at ing "finite-difference" equation
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X+ T1)PP't=f;,~t)+ *() IOf,,- ý*()/ 0 0 0 0\ 0 0 0 0
(A15) 0 0 -1 0 atl 0 0 0 0

This is the lattice-Boltzmann equation [see Eq. (2.19) in Sec. 0 0 0 0 -I 0

II B 2]. It is important to note that the Boltzmann equation is 0 0 0 0 0 00

still an exact representation of the particle dynamics, even (B3)
when expressed in finite-difference form. This is immedi- and
ately obvious when the identity ,-Sn, is inserted into
the collision term, , Then, the (0
lattice-Boltzmann equation becomes a simple identity (1- = 0 0

f(x+(T"/m)p',',t)=f(,j,t) +(P(t+ )Ifla'I(t+ T)) 0 0 0 0

0 0 00
kPtIah~).(A16) (0 0 00

In the case of a finite resolution lattice (used in a computa- ( ) 2 = 0 0 1
tional simulation of the quantum lattice-gas system), the 0 00 0
lattice-Boltzmann equation is the appropriate formulation of 0 0 0
the particle dynamics. However, the quantum Boltzmann 1 0 0 0
equation (A14), in differentiable point form, becomes the
appropriate formulation of the particle dynamics when talk- 0 0 0 0
ing about the system in the continuum limit. -n-n2= 000 0 (B4)

0 0 0 -1
APPENDIX B: REPRESENTATION OF A TWO-QUBIT We can represent a block diagonal 4 X 4 unitary matrix in

terms of these five operators as follows:
In this appendix, we show that Eq. (3.3) is a manifestly

unitary operator that entangles two qubits according to the 11 0 0 0
SU(2) special unitary group. Let us consider a quantum spin 0 A B 01
system with only two spins. Then the Hilbert space is four =An 1(1-Dn2) -Bal a2- Ca2aI
dimensional, and we choose the following basis kets in the
number representation: 0 0 0 -1

1 0 0 0(B5)

0 1+ 0 te) .
100)= 0 10)= 0 101)= I II)= . When the 2 X 2 block is a member of SU(2) as given by Eq.

(3.1), this expression for a unitary matrix becomes a repre-
0 0 01 sentation of a universal gate given by Eq. (3.3).

(BI) In this appendix, we used a two-spin quantum system as
an example system for illustrating how a universal gate can
be expressed in terms of the multispin creation and annihila-In this basis, the creation operators are tion operators. Although we used a two-spin system in this

example, the procedure outlined here also works for a spin
0 0 0 0 0 0 0 0 system with an arbitrary number of spins.

- 1All permutations of single fermion states may be imple-
Smented by successive application of a "interchange opera-

a 0 0 0 a2 1 0 0 " tor" [22], here denoted by , where the permutations
0 0 - 1 0 0 / occur between state a at site x and states /3' at site ;'

(B2)
i,'=tý6+ (B6)

Since t and t have real components, the annihilation op- This is a special case of the universal quantum gate, Y,
erators are the transpose of the matrices given in Eq. (B2): where 0=7 r/2, C= 0 and ý= 0. The interchange operator

al =(a)T and al =(•)r. The universal gate operator is ex- correctly handles any necessary phase change due to the anti-
pressed in terms of the following five operators: commutation relations (3.2).
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